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OUTLINE 
 PART 1 (Wooyoung Jeon) 

 Optimal hourly use of storage to minimize daily system costs 
 Exogenous wind generation  
 No network or reliability standards 

 PART II (Alberto Lamadrid) 
 Optimal hourly use of deferrable demand at 5 load centers to 

minimize the expected daily system costs 
 Optimal hourly use of storage collocated at 16 wind sites to 

minimize the expected daily system costs 
 Stochastic potential wind generation at 16 sites 
 NE Test Network (36 buses) with contingencies 

 PART III (Alejandro Dominguez-Garcia) 
 Manage distributed resources locally in a hierarchical structure 

to deliver aggregated energy services efficiently 
 Use only information exchange among immediate neighbors 
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PART I:  
Optimize Hourly Storage with 
Exogenous Wind Generation  

and No Network  

4 



An NSF I/UCRC 

Demand for Electricity in New York City   
for a hot summer day (7/16/10) 

•  Cumulative Base Demand over  
     24 hrs: 208 Gwh 
•  Cumulative Temperature-Sensitive  

Demand (TSD): 74 Gwh 
•  TSD is 35% of the cumulative 

demand (and 35% of the peak 
system load) 

•  Consistent with EIA data (30% of 
the total electricity demand is used 
for cooling during the summer) 

Use an econometric model to distinguish Temperature-Sensitive 
Demand (TSD) from Non-Temperature-Sensitive Demand (NTSD) 
TSD is a potentially large source of deferrable demand 
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Simplified Optimization Criterion 

Manage storage capacity to 
minimize the daily cost of 
energy and ramping to meet 
(load – wind generation) 
-   Linear cost function for energy 
-   Linear cost function for ramping 
-   Cooling demand can be met by AC 
    and/or thermal storage (deferrable 
    demand) 
-   AC can be used to charge storage  
   during off-peak periods at night 
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Glossary for the Optimization 
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The Effect of Adding Storage Capacity 
on Total Conventional Generation 

INPUT ASSUMPTIONS 
-  Daily demand for a typical  
  summer day in New York City 
-  Total Conventional Generation 
   = Load – Wind Generation 
   = Net Load 
-  Wind data are from NREL  
  hourly variability of generation  
  and less wind during the on-peak 
  period in the daytime 
- Wind capacity is 2GW (20% 
  of the Peak System Load that 
  provides 12% of the total  
  daily generated energy) 
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CONCLUSIONS - Adding storage (deferrable demand)    
 1) flattens the daily pattern of conventional generation  lower peak load 

  2) mitigates the variability of wind generation  less ramping by conventional sources 
 3) reduces the day/night price arbitrage  need other economic incentives 



Hourly Energy Purchased and Consumed 
(10GWh of Storage) 
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-  The energy consumed by  
  customers does not change 
  with deferrable demand 
- The energy purchased = 
  generation from wind + 
  conventional sources 
-  Deferrable demand   
  1) More energy is purchased  
         off-peak at night and the  
         peak load is lower  
  2) Provides ramping services  
         to mitigate the variability  
         of wind generation 



 Composition of the Cooling Demand 
Direct (AC) v Stored (THERMAL) 

-  Deferrable Cooling Demand 
    = 6.2% of TSD  
-  AC delivers all cooling needed  
    at night (and charges the  
    thermal storage) 
-  Mix of AC and thermal storage  
    deliver cooling during the day 
    AND reduce the ramping by 
    conventional generators 
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Pay for services used and get paid for 
services provided  What happens? 

-  Positive (Negative) payments indicate Paying (Being Paid) for a service 
-  CD, Conventional Demand and DD, Deferrable Demand 
-  WG, Wind Generation and CG, Conventional Generation 
-  The System Cost of ramping is caused by ramping CG 
-  WG accounts for 11% of Energy Supply and 45% of Ramping Demand 
-  DD accounts for 2% of Energy Demand and 71% of Ramping Supply 

Ramping 
Payment 
($1000) 

Energy 
Payment 
($1000) 

Total 
Payment 
($1000) 

Total 
Energy 
(MWh) 

Average 
Payment 
($/MWh) 

1) CD 2,120  18,920            21,041   214,911  98 
2) WG 1,735  ‐2,154  ‐419   27,070  ‐15 
3) CG ‐1,125  ‐17,236  ‐18,361   196,822  ‐93 
4) DD ‐2,730  470  ‐2,261   12,296  ‐184 
Buyers (1)+(2) =  3,855 (1)+(4) =  19,390 

Suppliers (3)+(4) = -3,855 (2)+(3) = -19,390 
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PART II:  
Optimize Hourly Storage with 
Stochastic Wind Generation  

and the NE Test Network Using  
the Multi-Period SuperOPF  
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An NSF I/UCRC 
North Eastern Test Network (NETNet)  

Reduced NPCC System (Allen, Lang and Ilic (2008)) 
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NREL Wind Site Clusters (EWITS) 
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Modeling the Inherently Stochastic 
Behavior of Potential Wind Generation 
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Steps: 
1.  Select a sample of days (24 

hours) using NREL wind 
speed data (EWITS) for 16 
sites in New York State and 
New England  

2.  For each hour of the day, 
use the K means algorithm 
to pick K representative 
wind speeds (scenarios) 

3.  Assign the sample days to 
the nearest mean for hour t 
and then estimate transition 
probabilities from hour t-1 
to hour t for t = 1,2,….,24 
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System Characteristics of the  
NE Test Network 
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Case 1:    No Wind: Initial system 
Case 2:    Wind, 32 GW of wind capacity at 16 locations added. 
Case 3:    Case 2 + Deferrable Demand (DD) at five load centers with a  

           total capacity of 23GW (136GWh)  
Case 4:    Case 2 + Energy Storage System (ESS) collocated at the  
                        wind sites with a total capacity of 23GW (136GWh)  

Characteristics of Wind Input 

Wind/conventional capacity     48% 

Capacity factor of wind        21% 

Expected potential wind generation  
could supply 13% of the daily energy 
purchased by customers 

NYNE GENERATING CAPACITY 
 Peaking (GW) 37 
 Baseload (GW) 26 
 Fixed Imports (GW) 3 
 TOTAL (GW) 66 
 New Wind (GW) 32 
 Storage Capacity (GW) 23 
 Storage Energy (GWh) 136  
 Peak Load (GW) 60 
 Average Load (GW) 49 



An NSF I/UCRC 
Summary of the Optimum Results 

COMPARING THE FOUR WIND, CASES 2-4 
-  Little difference in E[Operating Costs] and in E[Ramping Costs] 
-  Little difference in the E[Generator Net Revenue] 
-  E[ISO Surplus] is lower in Case 3 because there is much less congestion 
-  E[Payments by Customers] are also lower for Case 3 
WHY IS DEFERRABLE DEMAND (CASE 3) THE BEST FOR CUSTOMERS? 
-  Peak Generating Capacity (conventional MW for System Adequacy)) is lower   
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An NSF I/UCRC 
Hourly Dispatch of Wind and Prices 

Total Dispatch of Wind Generation, E[MW] Nodal Prices Paid for Wind, E[$/MWh] 

The main differences in dispatch occur  
from midnight to 5:00AM: Case 2 has the 
largest amount of wind spilled 

Deferrable demand and ESS reduce the  
range of nodal prices by mitigating wind  
variability and flattening the load profile  
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An NSF I/UCRC 
Hourly Payments to Wind Generators 

Similar revenues during  
the daytime for Cases 2-4 
Case 2 
Nodal prices driven down  
to zero at 4:00AM 
Case 2u 
Nodal prices higher at night 
with no congestion 
Case 3 
Higher system load at night 
increases the nodal prices 
Case 4 
Wind generation stored at  
night does not reduce the  
nodal prices but still gets paid 

Total Payments, E[$100,000]/hour 
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Composition of the Optimum Daily 
E[Pattern of Generation] for Cases 1 and 2 

Case 1: Base Case 2: Base + 32GW Wind 

Case 1 
Ramping for the daily load profile is provided by oil and natural gas capacity 
Case 2 
Wind displaces mainly oil and natural gas capacity and this capacity also 
provides additional ramping services to mitigate wind variability 
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Composition of the Optimum Daily 
E[Pattern of Generation] for Cases 3 and 4 

Case 3: Base + 32GW Wind  
             + 136GWh Deferrable Demand  

Case 4: Base + 32GW Wind  
             + 136GWh Collocated Storage 

Case 3 v Case 2 
More wind is dispatched and the daily load pattern is flatter (lower peak energy) 
Case 4 v Case 2 
Even more wind is dispatched but the peak energy delivered is unchanged  
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Why isn’t Storage used more for  
Peak Shaving/Valley Filling in Case 4? 

Case 4: Base + ESS 
with STOCHASTIC WIND 

Case 4: Base + ESS 
with DETERMINISTIC WIND 
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With stochastic wind, it is optimum to use storage mainly for ramping 
Still true if ramping costs are set to zero  a physical ramping reserve is needed 
With deterministic wind, it is now optimum to use storage mainly for  
      peak shaving/valley filling  STOCHASTIC INPUTS MATTER! 
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Next Steps for Research Using  
the Multi-period SuperOPF 

•  Extend the analysis to cover operations for a full year to 
evaluate the Total Annual System Costs, including capital costs, 
and the Net Benefits of different cases  

•  Use a combination of the stochastic characteristics of loads as 
well as potential wind generation as inputs   

•  Model the physical characteristics of storage and deferrable 
demand explicitly to provide more accurate constraints on the 
aggregate demand for and supply of energy services at nodes 

•  Model the behavior of Aggregators of Residential Customers 
(ARC) explicitly to compare the performance of a hierarchical 
structure of control for Distributed Energy Resources (DER) 
versus centralized control by a system operator 

•  Compare the performance of a rolling time horizon with non-
binding price projections versus the day-ahead/ real-time market 
structure currently being modeled   
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PART III:  
Manage Distributed Resources 
Locally to Deliver Aggregated 

Energy Services Efficiently 
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Enabling Distribution-level Markets:  
Interaction between DSOs and DERs  

•  Study of suitable communication/control architectures that would enable the 
implementation of the distribution-level portion of an envisioned hierarchical 
market structure; two potential solutions: 

–  Centralized architecture in which each Distributed Energy Resource (DER) is 
directly controlled by a Distribution System Operator (DSO): 

•  Requires a communication network connecting DSO with each DER 
•  Requires up-to-date knowledge by the DSO of DER availability on 

the distribution side 

–  Distributed architecture potentially offers several advantages: 
•  Easy and affordable deployment (no requirement for communication infrastructure 

between the DSO and various DERs) 
•  Ability for the DSO to handle incomplete knowledge of the available DERs 
•  Potential resiliency to faults and/or unpredictable DER behavior 
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The (Perhaps Naïve) Starting Point:   
DER Economic Dispatch (ED) 

•  Consider n DERs with constraints on the amount of active (or reactive 
power) they can provide 

•  Denote by X  the total amount of active (or reactive power) they need to 
collectively provide (i.e. demanded by the DSO) 

•  Assume the cost of each DER is quadratic. Then, the DER ED problem 
can be formulated as: 
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A Distributed Solution to the DER ED  
Problem [D-G, Cady, Hadjicostis, ‘12] 

•  The objective is to solve the DER ED problem without relying on the 
DSO having access to all the data defining the problem; instead, the 
computations are distributed as necessary to solve the problem 

•  To this end, we assume that each DER is equipped with a processor that 
can perform simple computations, and can exchange information with 
neighboring DERs.  
–  In particular, the information exchange between nodes (DERs) can be 

described by a directed graph 

Exchange of information between 
the DERs and the DSO 

Experimental validation: DER Communication  
and computation hardware 

DSO        


